Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 235: 115606, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37544275

RESUMO

Acute promyelocytic leukemia (APL) in children is associated with a favorable initial prognosis. However, minimal residual disease (MRD) follow-up remains poorly defined, and relapse cases are concerning due to their recurrent nature. Thus, we report two electrochemical flexible genosensors based on polypyrrole (PPy) and graphene quantum dots (GQDs) for label-free PML-RARα oncogene detection. Atomic force microscopy (AFM), scanning electron microscope (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize the technological biosensor development. M7 and APLB oligonucleotide sequences were used as bioreceptors to detect oncogenic segments on chromosomes 15 and 17, respectively. AFM characterization revealed heterogeneous topographical surfaces with maximum height peaks for sensor layers when tested with positive patient samples. APLB/Genosensor exhibited a percentage change in anode peak current (ΔI) of 423 %. M7/Genosensor exhibited a ΔI of 61.44 % for more concentrated cDNA samples. The described behavior is associated with the biospecific recognition of the proposed biosensors. Limits of detection (LOD) of 0.214 pM and 0.677 pM were obtained for APLB/Genosensor and M7/Genosensor, respectively. The limits of quantification (LOQ) of 0.648 pM and 2.05 pM were estimated for APLB/Genosensor and M7/Genosensor, respectively. The genosensors showed reproducibility with a relative standard deviation of 7.12 % for APLB and 1.18 % for M7 and high repeatability (9.89 % for APLB and 1.51 % for M7). In addition, genetic tools could identify the PML-RARα oncogene in purified samples, plasmids, and clinical specimens from pediatric patients diagnosed with APL with high bioanalytical performance. Therefore, biosensors represent a valuable alternative for the clinical diagnosis of APL and monitoring of MRD with an impact on public health.


Assuntos
Grafite , Leucemia Promielocítica Aguda , Pontos Quânticos , Humanos , Criança , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/genética , Polímeros , Pirróis , Reprodutibilidade dos Testes
2.
ACS Omega ; 7(22): 18997-19009, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694524

RESUMO

A biomass amino silica-functionalized material was successfully prepared by a simple sol-gel method. 3-Aminopropyltriethoxysilane (APTES) was added to a tannin-rich grape residue to improve its physicochemical properties and enhance the adsorption performance. The APTES functionalization led to significant changes in the material's characteristics. The functionalized material was efficiently applied in the removal of methyl orange (MO) due to its unique characteristics, such as an abundance of functional groups on its surface. The adsorption process suggests that the electrostatic interactions were the main acting mechanism of the MO dye removal, although other interactions can also take place. The functionalized biomass achieved a very high MO dye maximum adsorption capacity (Q max) of 361.8 mg g-1. The temperature positively affected the MO removal, and the thermodynamic studies indicated that the adsorption of MO onto APTES-functionalized biomass was spontaneous and endothermic, and enthalpy is driven in the physisorption mode. The regeneration performance revealed that the APTES-functionalized biomass material could be easily recycled and reused by maintaining very good performance even after five cycles. The adsorbent material was also employed to treat two simulated dye house effluents, which showed 48% removal. At last, the APTES biomass-based material may find significant applications as a multifunctional adsorbent and can be used further to separate pollutants from wastewater.

3.
Molecules ; 27(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056771

RESUMO

In this work, Norway spruce bark was used as a precursor to prepare activated biochars (BCs) via chemical activation with potassium hydroxide (KOH) as a chemical activator. A Box-Behnken design (BBD) was conducted to evaluate and identify the optimal conditions to reach high specific surface area and high mass yield of BC samples. The studied BC preparation parameters and their levels were as follows: pyrolysis temperature (700, 800, and 900 °C), holding time (1, 2, and 3 h), and ratio of the biomass: chemical activator of 1: 1, 1.5, and 2. The planned BBD yielded BC with extremely high SSA values, up to 2209 m2·g-1. In addition, the BCs were physiochemically characterized, and the results indicated that the BCs exhibited disordered carbon structures and presented a high quantity of O-bearing functional groups on their surfaces, which might improve their adsorption performance towards organic pollutant removal. The BC with the highest SSA value was then employed as an adsorbent to remove Evans blue dye (EB) and colorful effluents. The kinetic study followed a general-order (GO) model, as the most suitable model to describe the experimental data, while the Redlich-Peterson model fitted the equilibrium data better. The EB adsorption capacity was 396.1 mg·g-1. The employment of the BC in the treatment of synthetic effluents, with several dyes and other organic and inorganic compounds, returned a high percentage of removal degree up to 87.7%. Desorption and cyclability tests showed that the biochar can be efficiently regenerated, maintaining an adsorption capacity of 75% after 4 adsorption-desorption cycles. The results of this work pointed out that Norway spruce bark indeed is a promising precursor for producing biochars with very promising properties.


Assuntos
Compostos Azo/química , Carvão Vegetal/química , Grafite/química , Hidróxidos/química , Casca de Planta/química , Compostos de Potássio/química , Adsorção , Biomassa , Cinética , Porosidade , Análise Espectral , Temperatura , Poluentes Químicos da Água
4.
Chem Phys Lipids ; 239: 105113, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216586

RESUMO

1,8-cineole is a monoterpene commonly used by the food, cosmetic, and pharmaceutical industries owing to its flavor and fragrances properties. In addition, this bioactive monoterpene has demonstrated bactericidal and fungicidal activities. However, such activities are limited due to its low aqueous solubility and stability. This study aimed to develop nanoemulsion containing cineole and assess its stability and antibacterial activity in this context. The spontaneous emulsification method was used to prepare nanoemulsion (NE) formulations (F1, F2, F3, F4, and F5). Following the development of NE formulations, we chose the F1 formulation that presented an average droplet size (in diameter) of about 100 nm with narrow size distribution (PdI <0.2) and negative zeta potential (∼ - 35 mV). According to the analytical centrifugation method with photometric detection, F1 and F5 formulations were considered the most stable NE with lower droplet migration velocities. In addition, F1 formulation showed high incorporation efficiency (> 80 %) and TEM analyses demonstrated nanosized oil droplets with irregular spherical shapes and without any aggregation tendency. Antibacterial activity assessment showed that F1 NE was able to enhance the cineole action against Staphylococcus aureus, Enterococcus faecalis, and Streptococcus pyogenes. Therefore, using a simple and reproducible method of low energy emulsification we designed a stable nanoemulsion containing 1,8-cineole with improved antibacterial activity against Gram-positive strains.


Assuntos
Antibacterianos/química , Emulsões/química , Eucaliptol/química , Nanoestruturas/química , Antibacterianos/farmacologia , Estabilidade de Medicamentos , Enterococcus faecalis/efeitos dos fármacos , Eucaliptol/farmacologia , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos
5.
Mater Sci Eng C Mater Biol Appl ; 105: 110082, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546460

RESUMO

The production of more efficient yeast-based fuel cells (YFCs) depends on a combination of effective proton exchange membranes, electron mediators and current collectors. The adhesion of organisms on electrode surface plays a key role in the electron transfer process optimizing the generated power density. In this work, it is reported the preparation of a new YFC prototype using membranes of polyvinyl alcohol/ phosphoric acid and anodes of carbon nanotubes/polyurethane. The high surface area for yeast adhesion and the strong interaction established between cells/carbon nanotubes favor the energy generation in fuel cell. To evaluate the influence of external mediators and the consumption of feed solution (glucose) on performance of YFC, the kinetics of current generation of resulting fuel cells was analyzed. Results reveal that increases in the impedance of electrodes on generated power can be minimized by periodical infusion of feed fuel, preserving 70% of maximum power, representing an important condition for prolonged activity of fuel cell.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Nanotubos de Carbono/química , Poliuretanos/química , Prótons , Saccharomyces cerevisiae/metabolismo , Eletrodos , Glucose/metabolismo
6.
Sci Rep ; 9(1): 11765, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409828

RESUMO

We report an alternative random laser (RL) architecture based on a flexible and ZnO-enriched cellulose acetate (CA) fiber matrix prepared by electrospinning. The electrospun fibers, mechanically reinforced by polyethylene oxide and impregnated with zinc oxide powder, were applied as an adsorbent surface to incorporate plasmonic centers (silver nanoprisms). The resulting structures - prepared in the absence (CA-ZnO) and in the presence of silver nanoparticles (CA-ZnO-Ag) - were developed to support light excitation, guiding and scattering prototypes of a RL. Both materials were excited by a pulsed (5 Hz, 5 ns) source at 355 nm and their fluorescence emission monitored at 387 nm. The results suggest that the addition of silver nanoprisms to the ZnO- enriched fiber matrix allows large improvement of the RL performance due to the plasmon resonance of the silver nanoprisms, with ~80% reduction in threshold energy. Besides the intensity and spectral analysis, the RL characterization included its spectral and intensity angular dependences. Bending the flexible RL did not affect the spectral characteristics of the device. No degradation was observed in the random laser emission for more than 10,000 shots of the pump laser.

7.
Mater Sci Eng C Mater Biol Appl ; 99: 827-837, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889757

RESUMO

The adhesion of pathogenic bacteria in medical implants and surfaces is a health-related problem that requires strong inhibition against bacterial growth and attachment. In this work, we have explored the enhancement in the antibacterial activity of metal free-based composites under external electric field. It affects the oxidation degree of polypyrrole-based electrodes and consequently the antibacterial activity of the material. A conductive layer of carbon nanotubes (graphite) was deposited on porous substrate of polyurethane (sandpaper) and covered by polypyrrole, providing highly conductive electrodes characterized by intrinsic antibacterial activity and reinforced by electro-enhanced effect due to the external electric field. The bacterial inhibition of composites was monitored from counting of viable cells at different voltage/time of treatment and determination of biofilm inhibition on electrodes and reactors. The external voltage on electrodes reduces the threshold time for complete bacterial inactivation of PPy-based composites to values in order of 30 min for Staphylococcus aureus and 60 min for Escherichia coli.


Assuntos
Eletricidade , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Metais/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Polímeros/farmacologia , Biofilmes/efeitos dos fármacos , Contagem de Colônia Microbiana , Impedância Elétrica , Técnicas Eletroquímicas , Eletrodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Poliuretanos/farmacologia , Análise Espectral Raman , Staphylococcus aureus/efeitos dos fármacos
8.
Biotechnol Prog ; 35(4): e2809, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30895736

RESUMO

The detection of traces of substances by surface-sensitive techniques such as surface enhanced Raman spectroscopy (SERS) explores the interaction of adsorbed molecules on plasmonic surfaces to improve the limit of detection of analytes. This article is an overview about recent development in SERS substrates applied in the detection of organophosphorus pesticides on plasmonic surfaces (arrays of metal nanoparticles). The morphology, roughness, chemical functionalization degree, and aggregation level of plasmonic centers are some of the critical parameters to be controlled in the optimization of SERS signal from specific analytes.


Assuntos
Compostos Organofosforados/análise , Praguicidas/análise , Prata/química , Análise Espectral Raman , Propriedades de Superfície
9.
Pesqui. vet. bras ; 38(8): 1528-1536, Aug. 2018. tab, graf
Artigo em Português | LILACS, VETINDEX | ID: biblio-976485

RESUMO

Bactérias do gênero Aeromonas são patógenos altamente disseminados no ambiente aquático, responsáveis por grandes perdas econômicas na piscicultura de diversos países. São micro-organismos oportunistas e sua patogenicidade está ligada a alguns fatores de virulência, como a formação de biofilme. O estresse salino é um dos fatores que favorecem a formação dessas colônias e, consequentemente, o aumento de infecções. Essas infecções quando estão associadas ao biofilme são ainda mais resistentes aos antimicrobianos. Nesse contexto, o polipirrol destaca-se como uma alternativa antimicrobiana por possuir vários atributos terapêuticos e não apresentar toxicidade aos organismos. Dessa forma, o objetivo desse estudo foi avaliar o perfil de susceptibilidade e a capacidade de formação de biofilme dos isolados de Aeromonas spp. associados aos diferentes níveis de salinidade e polipirrol. Determinou-se a atividade antibacteriana dos isolados e ensaios de motilidade foram realizados com bactérias que carreavam o gene fla. Também verificou-se a capacidade do cloreto de sódio e polipirrol em interferir na formação do biofilme. Os resultados foram evidenciados com a microscopia eletrônica de varredura. As concentrações de 2 e 3% de NaCl inibiram a motilidade bacteriana. Na formação do biofilme, 83% dos isolados bacterianos induziram a produção na concentração de 0,25%. O polipirrol causou a morte de todos os isolados testados na concentração de 125μg/mL. Além disso, esse composto diminuiu a motilidade bacteriana nas concentrações de 0,25 a 3%, sendo que em relação à produção de biofilme, não houve interferência. Esses resultados evidenciam que os diferentes níveis de NaCl influenciam na formação do biofilme favorecendo a persistência da infecção. Este estudo também realçou a potencialidade do polipirrol como agente bactericida, sendo uma alternativa eficaz às drogas antimicrobianas para o tratamento das infecções causadas por Aeromonas spp.(AU)


Bacteria of the genus Aeromonas are highly disseminated pathogens in the aquatic environment, responsible for great economic losses in the pisciculture of several countries. They are opportunistic microorganisms and their pathogenicity is linked to some virulence factors, such as biofilm formation. Saline stress is one of the factors that favor the formation of these colonies and, consequently, the increase of infections. These infections, when associated with biofilm, are even more resistant to antimicrobials. In this context, polypyrrole stands out as an antimicrobial alternative because it has several therapeutic attributes and does not present toxicity to organisms. Thus, the objective of this study was to evaluate the susceptibility profile and the biofilm formation capacity of Aeromonas spp. associated with different levels of salinity and polypyrrole. The antibacterial activity of the isolates was determined and motility assays were performed with bacteria bearing the fla gene. The ability of sodium chloride and polypyrrole to interfere with biofilm formation has also been demonstrated. The results were evidenced with scanning electron microscopy. Concentrations of 2 and 3% of NaCl inhibited bacterial motility. In the biofilm formation, 83% of the bacterial isolates induced production at the concentration of 0.25%. Polypyrrole caused the death of all the isolates tested at the concentration of 125μg/mL. In addition, this compound decreased bacterial motility at concentrations of 0.25 to 3%, and no biofilm was produced. These results show that the different levels of NaCl influence in the formation of the biofilm favoring the persistence of the infection. This study also highlighted the potential of polypyrrole as a bactericidal agent, being an effective alternative to antimicrobial drugs for the treatment of infections caused by Aeromonas spp.(AU)


Assuntos
Animais , Pirróis/análise , Biofilmes/classificação , Aeromonas , Aquicultura
10.
Mater Sci Eng C Mater Biol Appl ; 89: 33-40, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29752105

RESUMO

The improved bactericidal activity of new composites for wound dressing prototypes represents an important strategy for development of more efficient devices that make use of synergistic interaction between components. The doping level of polyaniline represents a critical parameter for its corresponding biologic activity. In this work, it is explored the doping effect of usnic acid on undoped polyaniline, that introduces important advantages namely, improved bactericidal activity of polyaniline and the anti-biofilm properties of lichen derivative. The deposition of the resulting material on polyurethane foam potentializes its applicability as wound dressing, characterizing a new platform for application against Escherichia coli and Staphylococcus aureus.


Assuntos
Compostos de Anilina/química , Antibacterianos/química , Benzofuranos/química , Poliuretanos/química , Compostos de Anilina/farmacologia , Antibacterianos/farmacologia , Bandagens , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Portadores de Fármacos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Microscopia Eletrônica de Varredura , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
11.
ACS Appl Mater Interfaces ; 10(16): 13783-13795, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29620858

RESUMO

Multifunctional wearable electronic textiles based on interfacial polymerization of polypyrrole on carbon nanotubes/cotton fibers offer advantages of simple and low-cost materials that incorporate bactericidal, good electrochemical performance, and electrical heating properties. The high conductivity of doped polypyrrole/CNT composite provides textiles that reaches temperature on order of 70 °C with field of 5 V/cm, superior electrochemical performance applied as electrodes of supercapacitor prototypes, reaching capacitance in order of 30 F g-1 and strong bactericidal activity against Staphylococcus aureus. The combination of these properties can be explored in smart devices for heat and microbial treatment on different parts of body, with incorporated storage of energy on textiles.

12.
Pesqui. vet. bras ; 38(2): 244-249, fev. 2018. tab, graf, ilus
Artigo em Português | LILACS, VETINDEX | ID: biblio-895570

RESUMO

O uso indiscriminado de antimicrobianos tem proporcionado a algumas bactérias patogênicas a seleção de cepas multirresistentes, situação que pode ser agravada pela formação do biofilme. Desta forma, as nanopartículas de prata (AgNPs) vêm se destacando como uma alternativa inovadora, de baixo custo e eficiente contra doenças causadas por bactérias. O objetivo deste estudo foi determinar a atividade antimicrobiana das AgNPs e a interferência na formação do biofilme de Aeromonas spp. obtidas de organismos aquáticos. As AgNPs foram sintetizadas quimicamente utilizando como agente redutor o citrato trissódico e caracterizadas por espectrofotometria ultravioleta-visível (UV-Vis). A atividade antimicrobiana foi realizada contra três isolados pelo método de microdiluição em caldo para determinar a concentração bactericida mínima (CBM) e um cultivo com CCCP, um inibidor da bomba de efluxo, foi realizado para complementar o efeito das AgNPs. A interferência no biofilme foi realizada segundo o protocolo de formação e consolidado, além da caracterização desta estrutura de resistência por microscopia eletrônica de varredura. No teste da CBM, as AgNPs não foram capazes de inativar o crescimento dos isolados, ao passo que o nitrato de prata obteve eficiência em diferentes concentrações. Na presença do inibidor de bomba de efluxo, dos isolados analisados, um passou de resistente a sensível na presença das nanopartículas. As AgNPs foram eficazes em diminuir a formação de biofilme, como também atuaram sobre o biofilme consolidado em todos os isolados testados. Estes resultados indicam o potencial das nanopartículas de prata em interferir com o biofilme de Aeromonas spp. de organismos aquáticos e seres humanos.(AU)


The indiscriminate use of antibiotics has selected some pathogenic bacteria being multidrug-resistant, a situation that can be exacerbated by biofilms formation. Thus, silver nanoparticles (AgNPs) have been highlighted as an innovative alternative, low-cost and effective against bacterial diseases. The aim of this study was to determine the antimicrobial activity of AgNPs and the interference in Aeromonas spp. biofilm formation. The strains were obtained from aquatic organisms. The AgNPs were chemically synthesized using as reducing agent trisodium citrate and characterized by ultraviolet-visible spectroscopy (UV-Vis). The antimicrobial activity was carried out against three isolates by the microdilution broth method for determining minimum bactericidal concentration (CBM) and cultivation of CCCP, an inhibitor of the efflux pump, was carried out to complement the effect of AgNPs. Interference in the biofilm formation was performed according to the protocol and consolidated, within the resistance structure characterization by scanning electron microscopy. In the test of the CBM, the AgNPs were unable to inactivate the growth of the isolates, while the silver nitrate obtained efficiency in different concentrations. In the efflux pump inhibitor presence the isolates were analyzed, one went from resistant to nanoparticles to sensitive. The AgNPs were effective in reducing of biofilm formation and acted on the consolidated biofilm in all tested isolates. These results indicate the silver nanoparticles to interfere with Aeromonas spp. biofilm from aquatic organisms and human bodies.(AU)


Assuntos
Animais , Aeromonas , Anti-Infecciosos/análise , Organismos Aquáticos/microbiologia , Biofilmes , Nanopartículas Metálicas/análise , Prata , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/veterinária
13.
Colloids Surf B Biointerfaces ; 160: 724-731, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035820

RESUMO

Electrical impedance spectroscopy (EIS) appears a promising label-free methodology for the investigation of processes related to the aggregation of macromolecules in solution. Here, we explore the EIS technique as a convenient tool for studying the irreversible aggregation of human insulin and describing its corresponding fibrillation kinetics. The in situ measurement of the electrical response of pure insulin solutions at 60°C allows for the real-time monitoring of the protein fibrillation as a function of the incubation time. The fitting of the EIS data through an equivalent circuit based on a constant phase element provides a simple set of electric parameters whose abrupt changes can be associated to transitions occurring in the organization of the macromolecules. For establishing the reliability of the method proposed, we have compared the protein aggregation profile collected from the EIS data to that obtained from a conventional fluorescence methodology where Thioflavin T (ThT) is used as a dye probe. The description of the fibrillation process is quite similar in both cases, since characteristic times of the same order were found for the consecutive processes associated to the initial lag phase of insulin fibrillation, to the rapid growth of amyloidal aggregates and to the final saturation step. Our results suggest that in situ EIS can be considered as a promising approach for the real-time label-free monitoring of protein fibril formation.


Assuntos
Amiloide/química , Espectroscopia Dielétrica/métodos , Insulina/química , Agregação Patológica de Proteínas , Humanos , Cinética , Agregados Proteicos , Reprodutibilidade dos Testes , Fatores de Tempo
14.
Recent Pat Nanotechnol ; 10(3): 252-257, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27184396

RESUMO

BACKGROUND: Usnic acid has been progressively reported in the literature as one of the most important lichen metabolites characterized by a rich diversity of applications such as antifungal, antimicrobial, antiprotozoal and antiviral agent. Particularly, antimicrobial activity of usnic acid can be improved by encapsulation of active molecules in enteric electrospun fibers, allowing the controlled release of active molecule at specific pH. Few relevant patents to the topic have been reviewed and cited. METHODS: Bactericidal activity of usnic acid-loaded electrospun fibers of Eudragit L-100 and polyvinylpyrrolidone was examined against Staphylococcus aureus using inhibition hales methodology. RESULTS: The controlled release of active material at high pH is established after 10 minutes of interaction with media and results in reasonable activity against S. aureus, as detected by inhibition hales. CONCLUSION: The strong biological activity of usnic acid-loaded electrospun fibers provides a promising application for corresponding material as a bactericidal agent for wound healing treatment.


Assuntos
Antibacterianos/farmacologia , Benzofuranos/farmacologia , Ácidos Polimetacrílicos/química , Patentes como Assunto , Staphylococcus aureus/efeitos dos fármacos
15.
Mater Sci Eng C Mater Biol Appl ; 62: 317-22, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26952429

RESUMO

The antibacterial behavior of polypyrrole (PPy) depends on a diversity of structural parameters such as surface area, aggregation level and additives (metal nanoparticles) incorporation. This paper summarizes the influence of different preparation procedures of PPy on action of resulting antibacterial composite against Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. The bactericidal action has been assigned to morphology (size of polypyrrole nanoparticles). The electrostatic interaction established between polymer nanoparticles and bacteria provokes the bacterial cell death and returns advantages in comparison with conventional composites of polypyrrole decorated with metal nanoparticles.


Assuntos
Antibacterianos/química , Polímeros/química , Pirróis/química , Antibacterianos/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Nanopartículas Metálicas/química , Tamanho da Partícula , Polímeros/farmacologia , Pirróis/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
16.
Recent Pat Nanotechnol ; 9(2): 76-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27009122

RESUMO

The development of new fibrilar materials based on electrospinning (ES) technique has a notable history of nearly four centuries of discoveries and results. The eletrospinning manufacturing is one of the most widely reported methods for nanofiber (NF) manufacturing, providing security, high quality and productivity. In spite of the first patent about electrospinning has been applied in April 5(th), 1900 by John Francis Cooley, a historical perspective (since 1600s) about this amazing discovery represents an important step for future applications. Nanofibers have been considered one of the top interesting fundamental study objects for academicians, and greatest intriguing business materials for modern industry. As a consequence, lucrative organizations and companies have explored the relevance of nanofibers. In this paper, the quantity of published manuscripts and patent inventions is presented and the correlation of research activities to the production of new electrospinning materials is shown. China and the United States have been leading in electrospinning and nanofibers development. The company triumph is mostly dependent on applications improvement relevant for broader business society. A dramatic rise of interest in nanofibers produced by electrospinning technique has been confirmed due to the publication data, author's affiliation, keywords, and essential characterization procedures. Is has been shown that the number of publications on electrospinning and nanofibers researches from academic institutions is higher than industrial laboratories. More than 1,891 patents using the term "electrospinning" and 2,960 with the term "nanofibers" according to the European Patent Office at title or abstract have been filed around the world up to 2013. These numbers just continue to increase along with worldwide ES-related sales. Curiously, for the same period 11,973 electrospinning documents and 18,679 nanofibers-related (mainly manuscripts) were published considering the Scopus database with the same terms in the title, abstract or using keywords. Thus, statistically, there are more published manuscripts worldwide than patents for both keywords.


Assuntos
Nanofibras , Patentes como Assunto , Engenharia Tecidual
17.
Colloids Surf B Biointerfaces ; 88(1): 100-7, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21752609

RESUMO

This work is dedicated to the investigation of the prevailing molecular interactions between Cratylia mollis (Cramoll) and Concanavalin A (Con A) lectins and ionic (sodium dodecylsulfate, SDS) and non-ionic (Triton X-100, TX-100) surfactants, where we have used electrical impedance spectroscopy to map the dielectric characteristics of mixed lectin/surfactant solutions. The disorder induced in the lectin conformation is proportional to the extent of the access of the surfactant to the fluorophore present in the protein, resulting in its progressive unfolding. The complete unfolding of the lectin is associated to the formation of micelles in the core of the protein, each one of them containing a large number of detergent molecules, and therefore the process can be accompanied by measuring the electrical response of the binary surfactant/lectin system. For instance, the change in the real part of the impedance as a function of the relative concentration of the surfactant in the binary solution exhibits a breaking in its linear behavior that can be taken as indicative of a qualitative change in the environment surrounding the protein residue. We consider these results strong evidence in favor of using impedance spectroscopy methods for the analysis of protein-surfactant associations and for the characterization of the interactions that must prevail when the protein unfolds as the relative surfactant concentration is increased in aqueous solutions of these binary systems.


Assuntos
Concanavalina A/química , Espectroscopia Dielétrica/métodos , Impedância Elétrica , Octoxinol/química , Desdobramento de Proteína , Dodecilsulfato de Sódio/química , Espectrometria de Fluorescência , Tensoativos/química
18.
J Phys Chem B ; 115(21): 6903-8, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21545105

RESUMO

Molecular aggregation plays a key role in the physicochemical properties of dyes and surfactants. In this work, we show that electrical impedance spectroscopy (EIS) provides a practical method for the investigation of processes such as micellization in surfactants and dye dimerization. The electrical characterization of the structural phase transitions associated with aggregation events in these systems allows an accurate and direct determination of relevant parameters such as the corresponding critical concentrations for micelle formation and dimerization of these types of molecules, without the need of recurring to the use of auxiliary probe or reporter molecules. Because of its competitive advantages with respect to currently used methods (such as conductimetry and spectroscopic techniques), we argue that when implemented along the procedures described in this work, EIS becomes a simple and convenient technique for the characterization of aggregation processes in soft matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...